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Abstract: 

The integration of artificial intelligence (AI) into various industrial sectors has spurred remarkable 

progress in the field of manufacturing process development. This concept has been extended to 

polymer compound formulations, where AI techniques have been used to optimize rubber 

formulations (1-10) as well. Furthermore, it is conceivable that mixtures of other polymers, such as 

TPEs, thermoplastic materials, or polyurethane compounds, could be similarly treated. Advantages 

of employing AI-driven tools include reduced development time, enhanced efficiency, and increased 

accuracy.  

However, certain formidable challenges exist around AI-based rubber formulation development 

(11). One identified consideration is that these tools are useful only when conventionally organized 

datasets, cultivated over years, through rigorous experimental design techniques, are used. AI 

analysis is only as good as the dataset it is analyzing.   

Besides the challenges associated with using unstructured databases, additional difficulties arise 

from the fact that many mixtures address multiple and highly variable desired solutions. Finally, 

specific to rubber development, it is also understood there is some degree of measurement error 

compared to the exact values that are obtained in other fields. 

Due to these inherent challenges, at present, the use of AI in rubber compound development is 

generally restricted to small, highly specific databases and can only be used by experienced, 

knowledgeable technicians. 

To address these challenges, this article presents two possible solutions: 

1. Certain pragmatic methodologies for handling data under non-ideal conditions is described. 

They aim to handle the absence of systematic organization and offer practical insights into 

navigating the complexities of unstructured data. 

2. An AI tool, specifically tailored for accurately formulating mixtures from data characterized 

by diverse testing conditions, inherent errors and limited structural organization, is also 

described. By leveraging advanced AI algorithms, this tool can mitigate the negative impact 

of data variability and incompleteness, thereby enhancing the accuracy of mixture 

formulation prediction.  

Through its comprehensive exploration of challenges and innovative solutions, this article 

contributes to the evolving discourse on the practical implementation of AI tools in rubber 

compound development. 

Introduction 

The importance of effective mixing formulation development within the rubber industry is 



undeniable. Rubber compound 

formulations have an influence not only 

on product quality and functionality but 

also on manufacturing efficiency. As 

mentioned, AI technologies (a sketch of 

a forward propagation AI is depicted in 

Fig. 1, have already made their way 

into the manufacturing processing 

sector. As developers become 

convinced of the benefits of AI-driven 

compound development as a powerful 

assistant, its integration within the 

thermoplastic and rubber compounding 

fields will most likely advance.  

Along with this burgeoning development however, challenges related to using AI tools on 

unstructured datasets have arisen. In the late 1990’s, the author had the opportunity to test a - let us 

say – first generation AI tool. Despite conducting tests with a consistent dataset of several hundred 

mixtures based on only one EPDM polymer, significant deviations in predicting new mixture 

properties arose. The primary reason for these failures lied in the lack of transparency or back 

traceability. The deficiency between the data and confirmation experiments was extremely large, 

indicating the presence of unknown faulty data. Errors within the data, for instance, measurement 

errors or even typing errors, could be neither identified nor rectified.  

Since the introduction of experimental design techniques that construct numerically limited datasets 

through variations of a few ingredients, attempts have been made to push these boundaries and 

overcome dataset challenges (12-14).  However, the majority within the rubber industry still tend to 

utilize historically accrued files for development and thus, the chance for significant AI analytic 

errors still remains.  

 

AI Analysis Challenges in Rubber Compound Development 

Implications for AI Precision – Unstructured Databases 

Many companies currently use and populate databases that have limited structural organization. For 

example, these databases may contain non-comparable values, i.e., those that have been measured 

according to different testing protocols like ISO/ASTM. Values may also have come from non-

standard customer specifications. They may even contain missing property values.  

 Unfortunately, within the rubber industry, these types of databases are more prevalent than the 

structured, logical type. The resultant dataset values therefore, cannot be considered comparable 

and as such, cannot be analyzed using AI tools with any accuracy. This represents a significant 

impediment for the rubber industry in the use of AI-driven tools for development. 

Implications for AI Precision – Incompatibilities 

In the realm of AI and cloud computing, it is widely acknowledged that AI thrives on copious 

amounts of data, and, with the assumption "the more data, the better," precision in prediction is 



typically assured.  While this assertion resonates in contemporary AI applications, the landscape 

differs significantly in the rubber industry. 

This industry performs redundant experiments in many cases, even when employing DoE 

techniques. Unfortunately, the conventional DoE approach becomes impractical due to the 

industry's complexity, where numerous compound ingredients cannot be held constant while 

varying three to four ingredients. The resulting influx of experiments poses challenges in both 

laboratory execution and data analysis complexity. 

As a result, more and more data from experiments accumulates, which in turn requires a meticulous 

search-and-find approach for a few target property analyses. Additional difficulties arise from the 

fact that many mixtures address multiple and highly variable solutions. For example, certain 

applications may require different base polymers or crosslinking systems. For instance, sulfur-based 

systems may work well for one application compared to a peroxide-based one. Or, an HNBR 

compound may work better for one application compared to EPDM. Or even, two entirely different 

base compounds/crosslinking systems may suitably work for one application. The database 

necessarily ends up containing data on multiple polymers or crosslinking systems. Additionally, 

both ingredients and properties can be unevenly distributed. This “incompatibility” between 

polymers or cross-linking systems can lead to unmanageable second-order effects. 

Therefore, predictive mixtures, because they reference completely different base 

polymers/crosslinking systems, etc., are not directly discernible in extensive, pre-existing datasets. 

There is no way to easily separate such datasets. This again, poses a challenge for AI tools tasked 

with generating viable solutions.  

Implications for AI Precision – Data with Unpredictable Errors 

In rubber development, it is understood there is some degree of divergent error compared to the 

exact, pristine values observed in other fields in the computing domain, such as spell checkers or 

face recognition. Specifically, divergent error can be represented by the equation:  

(1) y = x + µ (with x = true value, µ = error)  

This transcends the traditional definition of error. Unlike datasets in other fields, errors in rubber 

testing are not only non-normally distributed, but can also exhibit diverse sudden onsets, among 

other possible distributions. These induced errors that occur through, for example, the change of 

procedures (mixing process, test protocols), testing equipment, material storage degradation, or 

even operator influence can find their way into the data over time. Additionally, measurement errors 

can be introduced during test sample preparation, for example, changing storage/preconditioning 

conditions, testing on different equipment, or even, movement of the testing facility to other 

locations. 

As an illustration, consider the crucial parameter of tensile at break [TB] and the intricate network 

of factors that influence its true value. 

Variables such as the molecular weight (MW) of the polymer, energy uptake during mixing, filler 

distribution and dispersion, variations in the weight of crosslinkers and accelerators, for example, 

all contribute to the nuanced nature of TB. This is over and above the aforementioned 

environmental influences. Considering all these factors will help provide a comprehensive 

understanding of the complex error distribution in rubber development.   



Unfortunately, the cumulative impact of diverse sources of error cannot be accurately 

mathematically modeled. This reality sheds light on the challenges posed and their implications for 

AI prediction precision. It makes certain machine learning [ML] tasks particularly challenging 

within this domain when using forward propagation AI tools.   

 

Practical Solutions When Working With AI 

Dealing with Historically Accumulated Mixture Databases 

The following solution is proposed when analyzing massive amounts of disparate information in 

one large file. Contrary to conventional wisdom, storing all this data in a single file is ill-advised. 

Going forward, such data sets should be divided, possibly using the following separation criteria:  

• Polymers (based on their compatibility), 

• Vulcanization systems (based on 

sulfur, peroxide, metal oxide, resin or 

other chemicals).  

This separation will necessarily result in a 

large number of smaller datasets. 

Consequently, if AI-driven analysis is to 

be successful within the scope of this 

application, it needs to be prepared to 

handle smaller amounts of data. 

However, the downside to using smaller 

datasets is that there might be insufficient 

data available for a potential solution or, a 

prediction may occur that lacks statistical 

confidence. 

Methodology to Address Non-Ideal Data Conditions 

One pragmatic solution to address dataset challenges involves detecting and eliminating faulty data 

using a correlation analysis between ingredients and properties, as elucidated in the renowned 

diagram by Coran and Studebaker (15 - 17) (Fig. 2). This visual representation effectively captures 

the correlation of crosslink density to physical properties in vulcanized rubber compounds. It 

describes a compound at constant carbon black and oil loading where the crosslinking agent (sulfur) 

is the only variable. While it is widely acknowledged that additional components, such as carbon 

black, oil, polymer and crosslinker, can significantly influence TB and other properties, these 

factors are expected to adhere to the correlation demonstrated in Coran's diagram.   



Coran’s diagram needs only to be converted 

into a multidimensional format to be useful 

for more in-depth data analysis, as 

illustrated in Fig. 3.  A Cartesian diagram, 

with properties plotted against crosslink 

density, are constructed for each level of 

carbon black and oil loading, forming 

perpendicular representations. In this 

illustration, utilizing datasets from 

published sources (18, 19), one can 

effectively showcase the influence of 

variations in carbon black and oil loading, 

as well as their types (represented on the z-

axis), on the tensile at break (TB on the y-

axis).  

As another example, the impact of sulfur as the crosslinking agent suggests that the sulfur bridge 

structure undergoes changes with varying sulfur amounts, influencing the tensile at break relative to 

crosslink density (sulfur on the x-axis, or alternatively MH-ML on the x-axis) (Fig. 4). These curves 

were generated using a sulfur-cured Natural Rubber (NR) compound accelerated with N-

Cyclohexylbenzothiazol-2-sulphenamide (CBS), maintaining a constant sulfur-to-CBS ratio, at two 

different levels of sulfur (20). This 

multidimensional approach provides a 

comprehensive view of the interrelationships 

between these crucial factors.  

Dealing with Data Containing Unpredictable 

Errors  

It is challenging to make definitive judgments 

about errors in the data, especially when dealing 

with larger datasets. There are two ways of 

tackling this:  

• When confronted with repetitive data, 

valuable insights into measurement errors 

can be gained. Traditionally, the control 

compound acts as a benchmark, as is used 

in Design of Experiments (DoE) in combination with iterative processes. Thus, it is 

advisable to incorporate a control compound as a standard procedure, even in trial-and-error 

experimentation. Adhering to good manufacturing practice (GMP), it is recommended to 

produce and test the control compound three to four times a year, for example. This 

precaution is essential due to the inherent unpredictability of results stemming from the 

aforementioned measurement errors and ensures no erroneous conclusions are drawn.  

• Quality dataset assessment can be facilitated again, using correlations between ingredients 

or among properties themselves. The user can generate 2D graphs that illustrate 

relationships between ingredients and/or properties, along with regression correlation 



coefficients. Additionally, users can employ a 3D graph for the analysis of relationships 

involving three variables, such as two ingredients and a specific property, for example.  

• The generation of diagrams depicting property versus crosslinker concentration, typically 

used as a measure of crosslink density, while keeping other ingredient concentrations 

constant, is a crucial step. If the resulting diagram, using the same x-y axis as in Coran's 

work, demonstrates a similar curvature or trend with minimal scatter around that curve, the 

condition proposed by Coran’s scheme is fulfilled. In such cases, the error can be estimated 

through visual data inspection or with regression and its correlation coefficient. 

As an example, using a dataset of 23 compounds, a 3D graph can be generated, placing Fmax-Fmin 

values on the x-axis for use as a synonym for crosslink density (21, 22).  Sulfur levels of 0.6 phr, 

1.25 phr, and 2.0 phr are plotted on the y-axis, and tensile strength on the z-axis  (Fig. 5). The graph 

adequately follows the trends of Fig. 4, albeit with slightly more scattering around the trend curve.  

To increase measurement confidence, 

standard deviations and errors should be 

assessed to decide whether datasets should 

be retained or excluded. To aid in 

differentiation between a measurement 

value and the "true" value, it is sensible to 

exclusively utilize data either from certified 

laboratories or from data that is trusted by 

the user, with minimized measurement error. 

Formulations for rubber compounds or other 

polymer compositions, such as TPEs, 

thermoplastic materials, and polyurethane 

compounds, can be used as long as they are 

normalized formulations, as customary in 

the rubber industry. 

Optimizing AI Integration in Rubber Industry Data Management 

Thus, when working with existing rubber data information, from an AI perspective, it is imperative 

that smaller data amounts stored in discrete repositories be used for analysis. In general, compound 

data sets should adhere to a standardized structure. Foundational physical properties should be 

consistently measured for each compound, complemented by customer-specific attributes. 

Similarly, if Trial-and-Error, One Step at A Time or DoE techniques are employed, adherence to 

standardized protocols is imperative. 

While the standard structure involves conducting a larger number of tests per compound in the 

development phase, the subsequent benefits of utilizing AI tools are noteworthy. These advantages 

encompass the prevention of redundant experiments through the prediction of an "in-specification" 

compound, which should always be verified in a confirmation experiment. In the event of an 

unacceptable deviation between the predicted compound and confirmation, it serves as a good 

starting point for further refinement.   

To facilitate seamless data integration, standardization of ingredient names, property names, and 

procedural and employee nomenclature should be implemented. Such standardization ensures 



compatibility, allowing for the effortless merging of compound data files with minimal effort and 

complication. In essence, the rubber industry's journey towards AI integration is underlined by the 

need for strategic data structuring and standardized practices to unlock the full potential of 

advanced analytics. 

AI Development Tool for Rubber Compounds - A Practical Approach 

A software tool based on a forward 

propagation AI called 

“GrafCompounder” (Fig. 6) seems 

particularly suited to address many 

of the above concerns (23).  

The aforementioned prediction 

failures prompted the development 

of this AI tool (24, 25). It is 

grounded in a highly pragmatic 

approach. It does not possess any 

so-called "secret" domain 

knowledge. Most importantly, it 

does not endeavor to derive 

equations, analytical or regression, from the assigned data. Instead, the tool treats each formulation 

as a "data point," consisting of a list of ingredients with corresponding quantity indications and a 

list of properties with their measured values. Each data point can be described as an nth-dimensional 

vector, where n represents the number of ingredients and properties.  

At its core, this tool employs a specialized AI technique, a highly specific genetic algorithm, that 

converges on a solution through multiple intermediate steps (generations). The process operates 

automatically and interconnects data points 

through simple interpolation in small steps. It 

determines which data points / vectors should be 

mixed and which factors should be used to best 

fulfill the user-defined target mixture properties. It 

addresses both the selection of the most suitable 

data points and, if necessary, the determination of 

optimal compromises among all requirements. To 

achieve this, the process internally employs a 

computation called the "fitness function," which it 

generates from the given criteria. 

Its ultimate advantage is that it can work with 

existing datasets without any modifications. 

Limitations arising from the dataset's structure 

must be accepted or modified by the user. Several 

tools and features are available in the software for 

this purpose, for example, a frequency bar 

diagram (Fig. 7):  



• The frequency distribution of each mixture component and / or each test value can be displayed 

and evaluated. This tool allows the user to identify empty data spaces that should be filled with 

additional compound data.  

• Compound data points with data missing in essential places, like missing values for properties 

specified as criteria, are automatically excluded from calculations.  

• Datasets from other files can be added and integrated with the merger function. 

• The composition of the predicted mixture is comprehensively presented, ensuring backward 

traceability to the original formulations utilized during the prediction process.  

Ultimately, this tool can counteract some of the disadvantages of dealing with non-structured / 

disparate databases. 

Considerations and Outlook 

The integration of AI into mixing formulation development brings about practical advantages, 

including: 

• Efficiency: A systematic development approach that minimizes experimental efforts, 

thereby expediting the development process. 

• Accuracy: Utilizing AI-driven tools enables targeted variations in criteria to focus on 

specific material properties. 

• Optimization: It has the capability to improve existing formulations and tailor them to 

specific requirements. 

• Sustainability: The reduction of waste is achieved through decreased experimentation 

efforts. This enables the analysis of numerous formulations, with only a few selected for 

actual confirmation experiments.  

However, the absence of systematically constructed historical datasets, material incompatibilities, 

and the possibility of inherent measurement errors poses a challenge, requiring a severely 

structured, pragmatic approach in the application of AI-driven tools. 

Consequently, the use of AI tools at present requires technological knowledge and judgment not 

only in selecting and compiling data for calculations but also, based on the user’s experience and 

knowledge, their ongoing assessment of whether the results make sense. Consequently, existing AI 

tools for mixture development should currently be classified as assistance systems and utilized 

only by expert rubber technologists. 

The GrafCompounder AI tool is poised to work well for processing historically accumulated 

datasets by the general user, particularly if assessment criteria such as data reliability can be 

established for AI processing. The tool has been designed with the goal of contributing significantly 

to the efficient, accurate, and sustainable advancement of rubber compound formulation 

development.  

Conclusion 

Given the inherent challenges associated with current rubber formulators’ existing datasets, the 

employment of general AI-based analytical tools can only be used in rigorously controlled instances 

and cannot guarantee statistically significant results. However, because of its promising inherent 



ability to analyze mass amounts of information, it is imperative that its use be advanced within the 

rubber industry to avoid the loss or neglect of valuable historical data.  

The AI-driven development tool "GrafCompounder" represents a significant advancement in 

polymer formulation development. Unlike traditional trial-and-error approaches, this tool allows 

developers to integrate their expertise with AI-based calculations. The incorporation of this tool into 

rubber compound development procedures, including data management, enhances data quality and 

provides more accurate predictions for rubber compounds, accelerating development and 

encouraging the creative exploration of new possibilities.  
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